

Handwheel Operated Brass Valves in Diaphragm Design for Speciality & Refrigerant Gases

Detailed Series Catalogue

ISO 9001 & TPED certified valve manufacturer

	Page
1. Operating Principle & Identifying Features	2
2. Features & Benefits for Best-in-Class Performance	
Valve with Parallel Inlet	3.1
Valve with Taper Inlet	3.2
3. Material of Construction & Assembly Arrangement	4
4. Disassembly, Inspection & Assembly Instructions	5
5. Product Selection Guide – Valve Item Code Matrix	6
6. List of Approved Gases	7.1 -7.2
7. Notes	8

Operating Principle & Identifying Features

Series RWH-03

Identifying Features

RWH-03 design uses two-piece spindle separated by non-perforated diaphragms. Five diaphragms in series act as gland packing and prevent external leakage when the valve is in open condition. The replacement of elastomeric seals (as in O-ring seal design) with metal diaphragms gives the valve superior leak integrity to the atmosphere. The valve has no threads or lubricants in the gas stream. This prevents generation of particles and contamination of gas and makes the design ideal for use for refrigerant and high purity gases.

The lower spindle is non-threaded, fitted with a soft seat and encased in a spring. The upper spindle is threaded into the diaphragm retaining gland nut. When the handwheel is in the closed position, the upper spindle pushes on the diaphragms, which deflect downward, forcing the lower spindle against the valve seat. When the handwheel is rotated toward the open position, the upper spindle is moved away from the diaphragms, allowing the spring to push the lower spindle away from the seat and allow flow of gas.

When working with diaphragm gland seal valves, it is very important to use good cylinder change-out procedures. These procedures must incorporate adequate purge and evacuation times to allow the valve interior to be properly cleaned.

Recommended Opening Procedure

The handwheel rotates approximately 2 turns from fully open to close. When opening a diaphragm valve, the operator will feel resistance for approximately 3/4 turn, at which point the resistance on the handwheel will disappear.

This is the point where the upper spindle would lose contact with the diaphragms, the handwheel becomes free from resistance and full flow is achieved. Therefore fully back seating the upper spindle is not necessary and should be avoided. The operator should always check the position of the valve by attempting to close the valve, never by trying to open the valve.

Recommended Closing Procedure

When the valve is open, full cylinder pressure is exerted on the diaphragms. The pressure on the large surface area of the diaphragm makes it difficult to push the diaphragms down. When closing the valve against cylinder pressure, about 60% of the closing force goes toward overcoming the gas pressure, while about 40% of the force is transmitted to the seat. Therefore, when a pressurized diaphragm valve is closed to the recommended closing torque of 6 Nm and the valve outlet is depressurized, the closing force on the seat is only about 2-3 Nm. The valve may be either "weeping" through at this point or are just barely closed. Because of this effect, it is necessary to use a "double-close procedure" on these valves which requires the operator to close the valve as tightly as possible by hand to vent the pressure in the valve outlet, and then to retighten the valve immediately. This also allows the valve to not be prone to inadvertent opening when exposed to vibration and shock.

Valve Installation

- 1. For 25E or equivalent thread, valving procedure & torque guidelines should be as per EN ISO 13341.
- For NGT threads, use hand tight + 3 turns wrench tight to install the valve in the cylinders (refer http://teknovalves.com/Information Center)
- 3. Valve installation torque for UNF threads:

	Nm	ft.lb
0.750-16 UNF-2A	80-100	60-75
1.125-12 UNF-2A	100-130	75-95

NOTE The cylinder manufacturer should be contacted to ensure torque values are appropriate.

ACAUTION

- 1. NEVER use wrenches or other persuaders to operate the valve.
- 2. Valving tools (e.g. sockets or jaws) used to screw the valve into the cylinder must make contact with the flats in the valve body and not touching any part of the PRD, if provided. The tools should fit the valve properly without causing damage.
- 3. Over-torquing the valve into the cylinder must be avoided as they cause high stresses in the cylinder neck, leading to overload failures. Over-torquing also leads to irreparable damage to the valve stem.
- 4. Do not attempt to replace soft seat in the lower spindle.
- 5. Repair and maintenance should be carried out by trained personnel.
- 6. Proper filling connectors should be used for filling and discharge ensuring contact only at the intended sealing surface.

Features & Benefits for Best-in-Class Performance

Series RWH-03 (Valve shown with Parallel Inlet)

All dimensions are in mm

Dimensions shown are for 1.125-12UNF-2A inlet & CGA 580 outlet

- a Depends upon outlet connection
- b Depends upon inlet connection

Design Specifications				
	Metric	English		
Minimum life	2000 cycles			
Pressure rating	250 bar 3600 psig			
Oxygen pressure surge test	50 cycles at 250 bar 50 cycles at 362			
Temperature range	-40 °C to +65 °C -40 °F to +149			
Flow coefficient (C _v)	0.27			
Minimum closing torque	6 Nm 4 ft.lb			
Gland nut installation torque	95 Nm 70 ft.lb			
PRD installation torque*	32 Nm	24 ft.lb		
Lubricant	Krytox GPL 225			

*Optional

Testing & Certification

- Valves meet EN ISO 10297:2017
- Valves are certified by BAM to European Transportable Pressure Equipment Directive (TPED) & available with Π mark
- PRD complies with CGA S-1.1
- Production testing as per EN ISO 14246

All dimensions are in mm

Dimensions shown are for 25E inlet & CGA 350 outlet

- a Depends upon outlet connection
- b Depends upon inlet connection

Design Specifications				
	Metric	English		
Minimum life	2000 cycles			
Pressure rating	250 bar 3600 psig			
Oxygen pressure surge test	50 cycles at 250 bar 50 cycles at 3625 p			
Temperature range	-40 °C to +65 °C -40 °F to +149 °			
Flow coefficient (C _v)	0.27			
Minimum closing torque	6 Nm 4 ft.lb			
Gland nut installation torque	95 Nm 70 ft.lb			
PRD installation torque*	32 Nm	24 ft.lb		
Lubricant	Krytox GPL 225			
MAX weight of cylinder package mass for which valve can be used without protection	111 kg	244 lb		

*Optional

Testing & Certification

- Valves meet EN ISO 10297:2017
- Valves are certified by BAM to European Transportable Pressure Equipment Directive (TPED) & available with Π mark
- PRD complies with CGA S-1.1
- Production testing as per EN ISO 14246

Valve shown with Parallel inlet and CG-1 PRD

Series RWH-03

Disassembly of valve

- 1. Place the valve after removing from the cylinder in a vice or similar holding fixture. The holding fixture should securely grip the valve body on the wrench flats so that there is no damage to the internal bores, inlet & outlet threads or pressure relief device.
- 2. Remove handwheel cap (13) by pulling it away from the handwheel (10) using a screw driver or similar tool. Using a 13 mm socket wrench or hex box wrench, remove the handwheel retaining nut (12) by turning it counter clockwise.
- 3. Remove the plain washer (11) & the handwheel from the spindle.
- 4. Using a 25.4 mm socket wrench or hex box wrench, unscrew the gland nut (9) in counter clockwise direction. The upper spindle assembly (8) will come out with the gland nut. Remove the upper spindle assembly, thrust metallic pad (7) & washer (6) from the gland nut by rotating it in clockwise direction.
- 5. Remove the valve from the vice & invert the valve body (1) to remove the diaphragms (5) followed by the lower spindle assembly (4) encased by the spring (3) & brass washer (2).
- 6. Pressure Relief Device, PRD (14) If required remove the PRD by rotating counter clockwise using a 12 mm or 17 mm (as applicable) socket wrench or hex box wrench. Be careful not to scratch / damage the sealing surface of the PRD with the valve body.

Inspection of valve & components

- 1. Valve body (1)
 - a. Inspect the valve body chamber for dirt, debris or damage. Where possible, blow out the valve body chamber using clean, dry compressed Air or Nitrogen to remove any foreign particles.
 - b. Inspect the valve body for seat damage & thread wear.
 - c. Do not attempt to repair the valve body if damaged.
- 2. Components
 - a. Always discard the diaphragms (5) once removed from the valve & replace with new diaphragms.
 - b. Inspect all parts visually for wear / damage. Replace parts as necessary.
 - c. Handwheel (10) should only be reused if in good condition.
 - d. Inspect the PRD (14) for any wear / damage. Replace PRD assembly if damaged or actuated.
 - e. Replace inlet O-ring (15) if valve is removed from the cylinder.

Assembly of valve

- 1. Lubricate parts as per GA drawing.
- NOTE Customer will receive parts in lubricated condition.
- Place brass washer (2) inside the valve body (1) step bore & place the SS spring (3) on top. Position the lower spindle assembly (4) inside the spring ensuring the spindle collar rests on top of the spring.
- 3. Place SS 301 x 5 diaphragms (5) in the valve body so that it rests on the top face of the lower spindle.
- 4. Fully screw the upper spindle assembly (8) in counter clockwise direction ensuring the collar face rests against the gland nut (9) counter face (fully open position).
- 5. Insert SS 303 thrust metallic pad (7) inside the gland nut assembly so that the cup face touches the spindle tip.
- 6. Push fit PA 66 washer (6) in the gland nut counter groove ensuring the lubricant in the other face of the thrust metallic pad is not displaced.
- 7. Screw in gland nut assembly inside the valve body by rotating in clockwise direction.
- 8. Clamp the valve body in vice with nylon clamp pads, ensuring no damage to the valve body & tighten the gland nut at torque between 90-100 Nm
- 9. Tighten PRD assembly (14), if applicable, at torque between 30-35 Nm in clockwise direction
- 10. Fit handwheel (10) by tightening handwheel retaining nut (12) over plain washer (11) by rotating clockwise at torque of 8-10 Nm
- 11. Push fit wheel cap (13) in the handwheel.
- 12. For parallel inlet connection, fit inlet O-ring (15) so that it rests against the flange.

Product Selection Guide – Valve Item Code Matrix

Series RWH-03

A - Other inlet, outlet & dip tube connections are available as per customer requirement

B - Valves for hydrogen service shall use copper burst disc in PRD (see next page)

 ${\bf C}$ - PCTFE seat insert is not available for oxygen & other oxidizing gases & their mixtures

Series RWH-03

Liquefied Gases								
SI.	UN		Chemical ASHRAE Soft Seat Options Inlet O-ring Materia		g Material			
No.	No.	Name of Gas ^A	Formula	No.	PA 66	PCTFE	PTFE	NBR
01	1009	Bromotrifluoromethane	CBrF₃	R 13B1	✓	✓	✓	✓
02	1013	Carbon dioxide	CO ₂	-	✓	✓	✓	Х
03	2517	Chlorodifluoroethane	$C_2H_3CIF_2$	R142b	✓	✓	✓	✓
04	1018	Chlorodifluoromethane	CHCIF ₂	R22	✓	✓	✓	Х
05	1974	Chlorodifluoromethane	CBrClF ₂	R12B1	✓	✓	✓	✓
06	1020	Chloropentafluoroethane	C_2CIF_5	R115	✓	✓	~	✓
07	1021	Chlorotetrafluoroethane	C ₂ HCIF ₄	R124	✓	✓	~	Х
08	1983	Chlorotrifluoroethane	CH ₂ CICF ₃	R133a	✓	✓	~	Х
09	1022	Chlorotrifluoromethane	CCIF ₃	R 13	✓	✓	✓	✓
10	1028	Dichlorodifluoromethane	CCl_2F_2	R12	✓	✓	✓	✓
11	1029	Dichlorofluoromethane	CHCl₂F	R21	✓	✓	~	Х
12	1958	Dichlorotetrafluoroethane	$C_2Cl_2F_4$	R114	✓	✓	~	✓
13	1030	Difluoroethane	$C_2H_4F_2$	R152a	✓	✓	✓	✓
14	1959	Difluoroethylene	$C_2H_2F_2$	R1132a	✓	✓	✓	✓
15	3252	Difluoromethane	CH_2F_2	R32	✓	✓	✓	✓
16	1035	Ethane	C_2H_6	R170	✓	✓	✓	✓
17	1037	Ethyl chloride	C₂H₅Cl	R160	✓	✓	✓	✓
18	1962	Ethylene	C_2H_4	-	✓	✓	~	✓
19	3296	Heptafluoropropane	C ₃ HF ₇	R227	✓	✓	~	✓
20	2193	Hexafluoroethane	C_2F_6	R116	✓	✓	✓	Х
21	1858	Hexafluoropropylene	C_3F_6	R1216	✓	✓	✓	Х
22	1062	Methyl bromide	CH₃Br	R40B1	✓	✓	~	Х
23	1063	Methyl chloride	CH₃CI	R40	✓	✓	✓	Х
24	1070	Nitrous oxide	N ₂ O	-	✓	х	~	Х
25	2422	Octafluorobutene	C ₄ F ₈	R1318	✓	✓	✓	✓
26	1976	Octafluoro-Cyclobutane	C_4F_8	RC318	✓	✓	✓	✓
27	2424	Octafluoropropane	C_3F_8	R218	✓	✓	✓	✓
28	3220	Pentafluoroethane	C_2HF_5	R125	✓	✓	✓	✓
29	1978	Propane	C ₃ H ₈	R290	✓	✓	~	✓
30	1080	Sulphur hexafluoride	SF ₆	-	✓	✓	~	✓
31	2191	Sulphuryl Fluoride	SO ₂ F ₂	-	Х	✓	✓	Х
32	3159	Tetrafluoroethane	C_2F_4	R134a	✓	✓	-	-
33	1982	Tetrafluoromethane	CF ₄	R14	✓	✓	✓	Х
34	1081	Tetrafluroethylene	C_2F_4	R1114	✓	✓	✓	✓
35	1984	Trifluoromethane	CHF₃	R 23	✓	Х	✓	✓
36	2036	Xenon	Xe	-	✓	1	×	✓

Series RWH-03

Compressed Gases							
SI.	UN	Name of Cos A	Chemical	Soft Se	at Options	Inlet O-rin	g Material
No.	No.	Name of Gas	Formula	PA 66	PCTFE	PTFE	NBR
01	1006	Argon	Ar	✓	\checkmark	✓	✓
02	1016	Carbon monoxide ^c	СО	✓	\checkmark	✓	✓
03	1957	Deuterium	D ₂	✓	\checkmark	✓	✓
04	1046	Helium	Не	✓	\checkmark	✓	✓
05	1049	Hydrogen ^B	H ₂	✓	\checkmark	✓	√
06	1056	Krypton	Kr	✓	\checkmark	✓	✓
07	1971	Methane	CH ₄	✓	\checkmark	✓	✓
08	1065	Neon	Ne	✓	\checkmark	✓	√
09	1066	Nitrogen	N ₂	✓	\checkmark	✓	✓
10	1072	Oxygen	O ₂	✓	Х	✓	✓

A – Valve may also be used for mixtures of the listed gases. PRD, if provided, shall be offered with nickel burst disc unless mentioned otherwise.

B - Valves for hydrogen service, if equipped with PRD, shall be offered with copper burst disc

C - Valves for carbon monoxide service / carbon monoxide gas mixture shall not be equipped with PRD.

Notes	
	\checkmark

Your safety is valued

International Distributors

USA & CANADA

Tekno Valves North America, Inc. +1 (225) 330 - 6590 www.tvnainc.com

EUROPE

GBP Gas Business Partner GmbH +49 (0)6468-917 99 52 www.gas-business-partner.com

Tekno Valves

Natun Rasta, Bilkanda, 24 Parganas (N), Kolkata INDIA +91 33 25956767 www.teknovalves.com

Copying or extraction from this catalogue shall not be done without Tekno Valves' permission, since content may include proprietary information